
Algorithms for Conway’s
Game of Life
BEN CAMPBELL’S SENIOR THESIS – FRANCISCAN UNIVERSITY OF
STEUBENVILLE

NOVEMBER 22, 2021

Outline
1) The Game of Life

2) The Simulator

3) The Algorithms

1) The Game of Life

1) The Game of Life
A cellular automaton created by John Conway in 1970.

Traditionally infinite grid of cells.

Each cell can be on or off.

The game can advance to the next state (generation) according to certain rules.

1) The Game of Life - Rules
Neighbors: the cells adjacent (including diagonal) to a given cell.

1. Underpopulation: any live cell with less than two neighbors dies

2. Stable: any live cell with two or three neighbors lives on to the next generation

3. Overpopulation: any live cell with more than three neighbors dies.

4. Reproduction: any dead cell with three neighbors becomes live

1) The Game of Life – Rules (simplified)
A cell is live in the next generation if:

◦ It is live and has two or three neighbors

◦ It is dead and has three neighbors

1) The Game of Life – Patterns
Cool patterns can be made in the game of life.

Filler

Blinker Glider

Loaf

Block

2) The Simulator

2) The Simulator
Written in HTML, CSS, and JS

23 files

About 1600 lines of code

2) The
Simulator –
Class
Diagram

2) The Simulator – Engines and Boards

3) The Algorithms

3) The Algorithms - Complexity
Complexity
◦ A way of measuring how fast an algorithm is.

◦ How many operations does the algorithm perform for a given input size?

◦ Define function f(n):
◦ n is the size of the input

◦ f(n) is number of operations

◦ Use Big O notation. Algorithm is O(f(n))

3) The Algorithms - Complexity

If the list has 5 numbers You perform addition 4 times.

[2,5,8, 2,8] 2 + 5 + 8 + 2 + 8

Example: add up numbers in a list.
◦ n: the number elements in the list.

◦ operation: addition

3) The Algorithms - Complexity

If the list has n numbers You perform addition n - 1 times.

[x1, x2, … , xn−1 , xn] x1 + x2 +…+ xn−1+ xn

If the list has 5 numbers You perform addition 4 times.

[2,5,8, 2,8] 2 + 5 + 8 + 2 + 8

f(n) = n - 1

Example: add up numbers in a list.
◦ n: the number elements in the list.

◦ operation: addition

This algorithm is O(n)

3) The Algorithms - Complexity
Name Complexity

Factorial 𝑂(𝑛!)

Exponential 𝑂(2𝑛)

Quadratic 𝑂(𝑛2)

Linear 𝑂(𝑛)

Logarithmic 𝑂(log 𝑛)

Constant 𝑂(1)

Slow

Fast

3) The Algorithms – General Method
Recall Simplified rule:

A cell is live in the next generation if:
◦ It is live and has two or three neighbors

◦ It is dead and has three neighbors

General method

For each live cell:
◦ Count neighbors, set live on next board if two or three.

◦ For each neighbor:
◦ Count neighbors, set live if two or three.

Requires 8 + (8*8) = 72 checks to see if a cell is live.

3) The Algorithms - Testing
Test using filler pattern. (grows quickly)

Ran tests to see how quickly algorithms performed.
◦ Time-based

◦ Generation-based

◦ Minimum processes: only algorithm, recording data, and
checking to see when to stop.
◦ window became unresponsive while tests were being run

3) The Algorithms
6 algorithms:

1. Cell List (CL) – O(72n2)

2. Hash Map (HM) – O(72n*?)

3. Single Array (SA) – O(72n) + O(size2)

4. Dynamic Array (DA) - O(72n) + O(2*n_chunk*size_chunk2)

5. Neighbor Tracking Single Array (NTSA) – O(~16n) + O(size2)

6. Chunk Calculate (CC) – between O(72n + 24*size_chunk) and O(n_chunk*9*size_chunk)

3.1) Cell List
Stores live cells as an unsorted list of coordinates.

Sometimes has to go through the entire list to figure out if a cell is live or not: O(n) lookup time

Setting a new cell to live is easy. Just put it on the end of the list.

[(0,0), (0,1), (1,0), (1,1)]

3.1) Cell List - Results
Slowest algorithm because it takes so long to tell if a cell is live. O(72n2)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time

3.1) Idea
What if we had a faster lookup speed?

3.2) Hash Map
Hash maps

◦ Hash maps are a list of key-value pairs.

◦ {“Bob”: 20, “Joe”: 18, “Sally”: 19, “Sebastian”: 18}

◦ Lookup time O(1).

Hash map algorithm
◦ Uses hash map to store what cells are live.

{“0,0”: (0,0), “0,1”: (0,1),
“1,0”: (1,0), “1,1”: (1,1)}

3.2) Hash Map - Results
Theoretically O(72n). Better than Cell List, but not that great compared to other algorithms.
O(72n*?)

0

50

100

150

200

250

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time

3.4) Idea
Maybe Arrays would be better?

3.3) Single Array
Keeps track of cells in a gigantic two dimensional array.

Lookup speed: O(1) (or maybe O(2))

Not infinite.

Needs to check every single cell to find the live ones: O(size2)

0 1 2 3

0 0 0 0 0

1 0 1 1 0

2 0 1 1 0

3 0 0 0 0

3.3) Single Array
Because the board size is not infinite, the pattern
deteriorates once it hits the borders.

3.3) Single Array - Results
O(72n) + O(size2). Much faster than Cell List or Hash Map. Gets slower as array size increases

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time (size = 500)

Single Array

Hash Map

3.3) Idea
Can we do arrays, but also infinite?

3.4) Dynamic Array

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 1 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

0 1 2

0

1

2

{“1,0”: “0,1”:

, ,
“2,1”: “1,2”:

, }

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 1 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

Board is split up into small arrays. Arrays are stored in a hash map.

Method using arrays, but also infinite. Less empty space to check.

3.4) Dynamic Array

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

0 0 1 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 1 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 0

0 1 2

0

1

2

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

When a cell needs to be set into a space that doesn’t have an array, a new one is made.

3.4) Dynamic Array - Results
Better than Cell List and Hash Map, but not as good as Single Array.

Performs well in first 150 generations, but then starts tapering off.

O(72n) + O(2*n_chunk*size_chunk^2)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time (chunk size = 70)

Single Array

Hash Map

Dynamic Array

3.4) Idea

We count neighbors much more than we set a cell live.

What if we keep track of how many neighbors a cell has so we don’t
have to keep re-counting?

3.5) Neighbor Tracking Single Array
Same as Single Array, but use another array to keep track of the number of neighbors each cell
has.

O(9) to set a cell live, but only O(1) to count neighbors

Not infinite

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1 2 2 1

2 3 3 2

2 3 3 2

1 2 2 1

Which cells are live
How many

neighbors a cell has

3.5) Neighbor Tracking Single Array -
Results
Roughly O(16n) + O(size^2). Ends up being almost the same as Single Array, but beats it at gen
520.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time (size=500)

Cell List

Single Array

Hash Map

Dynamic Array

Neighbor Tracking Single Array

3.5) Idea
Recap of General method:

For each live cell:
◦ Count neighbors, set live on next board if two or three.

◦ For each neighbor:
◦ Count neighbor, set live if two or three.

If we check every cell to determine the next state, we will never get faster than O(n).

Is there a way to get faster than O(n)?

We would need to calculate several cells at once.

3.6) Chunk Calculation
Based of of Dynamic Array. When it calculates the next state of a chunk, it stores the solution in
a hashmap, and uses this so it doesn’t have to re-calculate it.

{ : :

, , … }

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

“0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 1, 1, 1, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0”

“0, 0, 0, 0, 0
0, 0, 1, 0, 0
0, 0, 1, 0, 0
0, 0, 1, 0, 0
0, 0, 0, 0, 0”

Key is the chunk
expressed as a string.

Value is an array of the
calculated solution.

Previously calculated solutions

3.6) Chunk Calculation - Process

Convert each chunk to a string.

“0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 1, 1, 1, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0”

Check to see if the solution was
previously calculated.

Previously calculated
solutions

?

3.6) Chunk Calculation - Process

If it has, use the solution.

{ : :

, , … }

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

“0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 1, 1, 1, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0”

“0, 0, 0, 0, 0
0, 0, 1, 0, 0
0, 0, 1, 0, 0
0, 0, 1, 0, 0
0, 0, 0, 0, 0”

Previously calculated solutions

Otherwise, calculate it and store it in the hashmap.

“0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 1, 1, 1, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0”

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

Previously calculated solutions

3.6) Chunk Calculation - Results
Best overall. May be biased to be good at the filler. If the board size is small, the array algorithms
are better.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25

Generation

Time (sec)

Generation at Time (chunk size=64)

Cell List

Single Array

Hash Map

Dynamic Array

Neighbor Tracking Single Array

Chunk Calculation

3.6) Chunk Calculation – Interesting Bugs
Because it uses the same array for multiple chunks, interfering with it after the initial state
causes the change to happen wherever the array is used.

Since you’re changing the solution it calculated, it remembers the interferences you made later.

